Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes
نویسندگان
چکیده
This article provides a detailed analysis of the behavior of suprema and moduli of continuity for a large class of random fields which generalize Gaussian processes, sub-Gaussian processes, and random fields that are in the nth chaos of a Wiener process. An upper bound of Dudley type on the tail of the random field’s supremum is derived using a generic chaining argument; it implies similar results for the expected supremum, and for the field’s modulus of continuity. We also utilize a sharp and convenient condition using iterated Malliavin derivatives, to arrive at similar conclusions for suprema, via a different proof, which does not require full knowledge of the covariance structure.
منابع مشابه
Some applications of the Malliavin calculus to sub-Gaussian and non-sub-Gaussian random elds
We introduce a boundedness condition on the Malliavin derivative of a random variable to study subGaussian and other non-Gaussian properties of functionals of random elds, with particular attention to the estimation of suprema. We relate the boundedness of nth Malliavin derivatives to a new class of sub-nth Gaussian chaos processes. An expected supremum estimation, extending the DudleyFerniq...
متن کاملApplication to Stochastic Flows
We review several competing chaining methods to estimate the supremum, the diameter of the range or the modulus of continuity of a stochastic process in terms of tail bounds of their two-dimensional distributions. Then we show how they can be applied to obtain upper bounds for the growth of bounded sets under the action of a stochastic flow.
متن کاملHarnack Inequalities in Infinite Dimensions
We consider the Harnack inequality for harmonic functions with respect to three types of infinite-dimensional operators. For the infinite dimensional Laplacian, we show no Harnack inequality is possible. We also show that the Harnack inequality fails for a large class of Ornstein-Uhlenbeck processes, although functions that are harmonic with respect to these processes do satisfy an a priori mod...
متن کاملA local maximal inequality under uniform entropy.
We derive an upper bound for the mean of the supremum of the empirical process indexed by a class of functions that are known to have variance bounded by a small constant δ. The bound is expressed in the uniform entropy integral of the class at δ. The bound yields a rate of convergence of minimum contrast estimators when applied to the modulus of continuity of the contrast functions.
متن کاملMoment Inequalities for Supremum of Empirical Processes of U-Statistic Structure and Application to Density Estimation
We derive moment inequalities for the supremum of empirical processes of U-Statistic structure and give application to kernel type density estimation and estimation of the distribution function for functions of observations.
متن کامل